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A precise statistical definition is established for the geometric "shape" of a randomly distorted wavefront.

Relationships between the phase-structure function and the statistics governing the shape are derived. The

most significant portion of wavefront distortion caused by atmospheric turbulence is a random tilting of the

plane-wave front. A procedure is outlined for calculating the influence of wavefront distortion on optical

systems. Estimates are formed of the effect of wave-front distortion on photographic resolution and optical

heterodyne efficiency.

I. INTRODUCTION

OPTICAL wave propagation through a randomly
inhomogeneous medium produces wavefront de-

formation. The spatial (as distinguished from the
temporal) statistics of this deformation are generally
described by a quantity called the phase-structure func-
tion.' If, at points x and x' ,the phase variations associ-
acted with the deformation are denoted by q(x) and
¢(x'), respectively, then the phase-structure function is
defined as

ED(r)= ([+(x)-k(X')] 2 ), (1.1)
where

r= jx-x'j, (1.2)

and the brackets ( ) denote an ensemble average.
(Isotropy and homogeneity of the deformation statistics
are implicit in this definition.) Theoretical and experi-
mental procedures for the evaluation of D(r) have been
developed.2

Inasmuch as D(r) represents all the statistics of phase
fluctuation,' it should be possible to obtain information
concerning the "shape" of the deformed wavefront
from D(r). Knowledge of the shape would provide
insight into the nature of the effects of wavefront de-
formation on an optical system. For example, if wave
deformation can be approximated by a random tilting
of a plane wavefront, then shorter exposures will
clearly result in improved photographic resolution. The
resolution can be computed directly from the phase-
structure function,4 but a quick and physically meaning-

1V. I. Tatarski, Wave Propagation in a Turbulent Medium
(McGraw-Hill Book Company, Inc., New York, 1961).

2 See Ref. 1. R. E. Hufnagel and N. R. Stanley, J. Opt. Soc. Am.
54, 52 (1964). D. L. Fried and J. D. Cloud, J. Opt. Soc. Am. 54,
574A (1964).

3 It can be shown theoretically that phase fluctuation, because
of the central limit theorem, has a Gaussian distribution. Since a
Gaussian distribution is completely described (except for a mean
value) by its second moment, and since OD (r) is the second moment
for differential-phase fluctuation (which difference has zero mean),
we conclude that D)(r) completely specifies the statistics of phase
fluctuation.

ID. L. Fried, "The Effect of Wave-Front Distortion on the
Performance of an Ideal Optical Heterodyne Receiver and an
Ideal Camera," presented at the Conference on Atmospheric
Limitations to Optical Propagation at the U. S. National Bureau
of Standards CRPL, 18-19 March 1965.

ful glimpse into the problem, providing quantitative
results, can be obtained if we have data on the statistical
"shape" of wavefront deformation. Similarly, the per-
formance of an optical heterodyne receiver detecting a
signal with a deformed wavefront can be estimated
from wavefront "shape." 4

The key to the whole concept is in formulating a
precise statistical definition of the deformed wavefront's
"shape." In this paper, this has been accomplished by
examining the wavefront over the circular aperture of
an unspecified optical system. The deformation in that
region is represented by a series of orthonormal poly-
nomials. These polynomials are chosen so that each
term or group of terms in the series can be associated
with a specific geometric shape. The shape of the wave-
front can then be related to the mean square value of
the coefficients of the polynomials in the series. The
mean square error for a truncated series provides a
measure of the shape of the deformed wavefront.

The polynomials used are the first six terms of an
infinite sequence. Their sum can be cast in the form of
a general quadratic; i.e.,

a+bx+cy+dx2+exy+fy2 .

This can represent any wavefront distortion which can
be built up from an average phase change, a tilt, a
spherical deformation, and a hyperbolic deformation.
The extension of the results obtained in this paper to
include higher order types of distortion is a straight-
forward process.

II. NOTATION

Consider a plane perpendicular to the nominal direc-
tion of propagation of a distorted plane wave. Two
position vectors, x and x' are defined in terms of a co-
ordinate system in this plane. The vectors x and x' have
components (xy) and (x',y'), and magnitudes x and x'.
As indicated previously, the phase at x and x' is denoted
by k(x) or +(x'), for a particular realization of the
wave-front distortion. Brackets ( ) are used to denote
an ensemble average. The function W(x,D) defines a
circular region of diameter D, radius R. It equals unity
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inside this circle and zero outside; i.e.,

IV(xD)- ={' if 1x1<R
0, if !x>R.

(2.1)

The six orthonormal polynomials worked with in this
paper are defined in Eqs. (2.2a- f). The first polynomial

F, (x) - (7rR)- ~ ~ 2.2a)

can be used to represent a change in the average phase
over the circular region. The second pair of polynomials

+(x); i.e.,

A/\ (1/7rR2) dxW(xD)[0(x)- c(x) ]2

To minimize A, a,, is chosen so that

(a/a,=)/A = 0.

(3.2)

(3.3)

It is shown in Sec. IV that extrapolation to two-
dimensional form from the usual one-dimensional result
for the coefficients of an orthonormal series is applicable;
i.e., that

F 2(X)-(7rR4/4)-'(x)

Fa3(X)- (7rR414)-1(y)

(2.2b)

(2.2c)

can be used to represent an average tilt. The next

F4(x)= (7rR1/12)1(x 2+y 2 -R2/2) (2.2d)

can be used to represent a spherical deformation. Finally,

F5(X)-(7rR'/6)-1(X2-y2)

Fo(x) (7rRG/24)1(Xy),

(2.2e)

(2.2f)

can be used to represent a hyperbolic deformation.
These polynomials are closely related to Zernike's

polynomials. It is easy to generate higher-order terms;
i.e., F7(x) and up (from Table XXI of Ref. 5). It is easy
to verify the fact that these polynomials satisfy the
orthonormality condition

JdxW(x,D)F,(x)F,(x) = b, (2.3)

where 6,,, is the Kronecker delta

t1 if bu=P
lo { if U :. (2.4)

The integration in Eq. (2.3) and all other integrations
throughout this paper are understood to cover the
infinite plane, unless explicitly indicated otherwise.
Finite bounds for the integraion are provided, in effect,
by the aperture function.

III. WAVEFRONT APPROXIMATION

The distorted wavefront's phase 4 (x) is approximated
by the infinite series

New coefficients ac, aL, as, and aQ, are defined by

(aC )2 - (a 1) 2,

(aL)2= (a2)2+ (a3)2,

(as)2= (a4) 2

(aQ)2
= (a4)2+ (a5) 2+ (a6)2.

(3.4a)

(3.4b)

(3.4c)

(3.4d)

Examining the polynomials Fl(x) to F 6(x) and visu-
alizing the surface each represent, we see that the
quantities ((ac) 2), ((aL)2), ((aS) 2), and ((aQ)2) can be
considered measures of the mean square amount of
average phase fluctuation over the circular region of
interest, of the average tilt of the wavefront, of the
extent of spherical deformation of the wavefront, and
of the amount of quadratic (i.e., spherical plus astig-
matic) deformation, respectively.

In addition to evaluating these four quantities, it
would be desirable to know how good an approximation
to the deformed wavefront is provided by a finite
number of terms in the series cb(x) of Eq. (3.1). For this
purpose, define the finite series Ic(x), 4L(X), Cbs(x)
and cDQ(x), as

=1j (3.5)

where j takes the values C, L, S, and Q and nj has the
values 1, 3, 4, and 6, respectively. The geometric
significance of the four Ij's defined above is obvious.
Now, let us define Ai as

Aj-=(l/rR2) dxW(xD)[0(x)-cPj(X)]2. (3.6)

(4.3)

(D(x)= E a,,F.(x), (3.1)
A1=1

where the coefficients a. are chosen to optimize the
approximation. The error in the approximation is A, the
aperture-averaged-square difference between >(x) and

5 M. Born and E. Wolf, Principles of Optics (Pergamon Press,
Inc., New York, 1959).

If the ensemble average (Aj) can be computed, we obtain
a measure of the goodness of various possible finite
series approximations to the distorted wave front.

IV. DERIVATION OF UNAVERAGED
RELATIONSHIPS

Substituting for /j(x) in Eq. (3.3) by using Eq. (3.1),
expanding the square, and interchanging the order of
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summation and integration, we find

A=- dxW(x,D)q2 (x)

2 R J
- a,, a dxW(x,D)O(x)F,(x)

=rR2 J

+ A aY a- b dxW(x,D)F,(x)F^(x). (4.1)
$C=1 7rR 2

Invoking the orthonormality condition, Eq. (2.3), we
can perform the last integration and then one of the
two sum~mations in the double sum, we obtain

11-
'dxW(x,D)02(x)

7rR2 J
2 .0

- A2 a,; dxTW(x,D)Ok(x)F,,(x)
,7rR 2 '_1

1 0

+ E_ (a,,E2~. (4.2)
7rR

2 
g=1

Substituting Eq. (4.2) into Eq. (3.2), differentiating,
and solving for a,, we get

a, = dxW(x,D) k(x)F,(x), (4.3)

as indicated previously. Substituting Eq. (4.3) into
(4.2) to eliminate the second integration, we get

Ir 1
A= |dxW(x,D),02(X)__YE (a,)2. (4.4
R2 J7rR 2 2=1

If we substitute Eq. (4.3) into (4.2) to eliminate a,,,
make double integrals out of the product of two
integrals, and interchange the order of integration and
summation, we obtain

-dxW(x,D)0 2 (x)-- Ildxdx'W(x,D)
irR2 J r12 J

X W(x',D) YF,(x)F.(x')0f(x)0f(x'). (4.5)

Working with the finite series approximation, we can
easily show the results corresponding to Eq. (4.4) and
(4.5) to be

1 1- 1 nlj
A= IdxW(x,D)0 2 (x)- Y(a.)2

7rR2 J 7rR 2
g=1

(4.4')

1 1.1C
A=- dxW(x,D)02(x)-- J dxdx'W(x,D)

X W(x',D)E F,,(x)F,,(x')0(x) 0(x'). (4.5')
i=l

From Eqs. (3.4b, c, and d) and Eq. (4.4') we can see that

(aL)
2

== AC-AL,

(as) 2 = AL- AS,

(aQ) 2= AL-AQ.

(4.6a)

(4.6b)

(4.6c)

The problem at this point is reduced to computation of
the ensemble average of Aj as given by Eq. (4.5') and
relating the result to the phase-structure function.

V. DERIVATION OF AVERAGED
RELATIONSHIPS

FE~amining Eqs. (2.2a-f), we note that FI(x) is inde-
pendent of x so that Jfdx'W(x',D)F1 (x)F1 (x') equals
unity. Also for g not equal to one, JfdxW(x',D)F,(x)
XF,(x') vanishes. Consequently,

1 1
- fdxW(x,D)k2(x)= ffdxdx'W(x,D)
7rR2 J rR 2 J

XTV(x',D) Y F,,.(x)F,, (X'),02(X). (5.1)
i1-

Symmetrizing between x and x' in the right-hand side
of Eq. (5.1) gives

fdxW(x,D),02(x)= f dxdx'W(x,D)
7rR2 J27rR2 J

XW(x',D), F, F(x)F,, (XI) [t,2(X) +02(X') ]. (5.2)
Y=1

Substituting Eq. (5.2) into (4.5'), taking ensemble aver-
ages of both sides, converting the variables of integra-
tion from x, x' to r, r', where r, r' are defined as

(5.3a)

(5.3b)

rf= 2 (X+X'),

r= x-x',

and recognizing the presence of the phase-structure
function in the integrand, we find

(Aj)=- ffdrdr'W( r'+ rj, D)W( r'-2rj, D)

n?

X E F,l(r'+ r)F,,,(r'- 1r) O(r) . (5.4)
8t=1

The r' integration in Eq. (5.4) can be performed ex-
plicitly. For this purpose, define the function 5#(r,D) as

5#(r,D)= fdr'W( Ir'+±rf, D)W( r'-1rj ,D)

nX
X A F,(r'Jr r)F,,(r'- Ir).

pull
(5.5)

This function is evaluated in Appendix A for j= C, L,
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S, and Q. The results are

5Fc(r,D)= (1/7r){2 cos-1 (r/D)
-2(r/D)[1-(r/D)2 ]i} W(r,2D), (5.6a)

9L(r,D) = (1/7r){6 cos-'(r/D)- [14(r/D)-8(r/D)3 ]

X E1- (r/D)2]} W(r,2D), (5.6b)

gs(r,D) = (1/7r) (8 cos-1 (r1D)
-E24(r/D)-(80/3)(r/D)3 +(32/3)(r/LD) 5 ]

X[1-(r/D)2 ]1 }2W(r,2D), (5.6c)

9Q(r,D)= (l)1 2 cos-1 (r1D)
-E44(r/D)-64(r/D)+±32(r/D) 5]

X 1-(r/D)2 ]} W(r,2D). (5.6d)

The evaluation of 5:j(r,D) given in Eqs. (5.6a-d), ob-
tained in the Appendix through a rather extensive and
quite uninteresting calculation, is fundamental to the
program of this paper. With this in hand, the rest of the
work is straightforward. Substituting from Eq. (5.5)
into Eq. (5.4) and noting that the integrand is isotropic
in r, so that the angular integration can be performed,
we find

1 rD
(Aj) = f rdrgj(r,D) D(r),

1 D

((aL )2) = - rdr[9c(r,D) - 5L(r,D)]5 t(2 ),

(5.7)

(5.8a)

( rD
((as) 2) = - rdr[5L(r,D)-5is(r,D)]°)(r), (5-8b)

ignore this factor. (A discussion of this matter is given
in Appendix D.)

In this paper, particular values of -A are not of con-
cern. (The necessary data for computing A are provided
in Appendix C.) In fact, it is convenient to replace -A
with a new quantity r0 which has the dimensions of
length and is defined by

rOc-(6.88/eA)3 5. (6.2)

Correspondingly, the phase structure function, ex-
pressed in terms of r0, is

D(r) = 6.88(r/ro)5 13 . (6.3)

The apparently arbitrary constant 6.88 was chosen on
the basis of the analysis of the performance of an optical
heterodyne detection system.' In Ref. 4, ro is shown to
be that diameter of a heterodyne collector for which
distortion effects begin to seriously limit performance.
It is seen later that it is also that diameter for which
(Ac) is essentially unity. Typical values of ro for visible
and near infrared wavelengths and for approximately
vertical propagation paths down through the atmos-
phere are of the order of several centimeters.

VII. EVALUATIONS

Substituting Eq. (6.6) into (5.7), replacing the
variable r by it, where

u= r/D, (7.1)
and noting that

3j(r,D) = 5j(ul),

we get

1 rD
((aQ)2) = R J rdr[IEL(r,D) - 5:Q(r,D)]D(r). (5.8c)

VI. THE PHASE-STRUCTURE FUNCTION

Several theoretical studies of the phase-structure
function have been performed utilizing various ap-
proaches to the propagation problem.2 Based on the
IKolomogoroff similarity theory of turbulence,6 which
predicts a spatial correlation of turbulence which de-
creases proportionally to the two-thirds power of the
spatial separation, it is possible to show that the phase
structure function may be written as

(6.1)

whereXA is a constant determined by the path of propa-
gation, the wavelength, and the particular environ-
mental conditions. Equation (6.1) is exact only in the
near field; i.e., for short propagation paths. For longer
distances of propagation, there is an additional r-de-
pendent factor which varies from one half to one, which
is suppressed in (6.1). For the body of this paper, we

61 A. Kolomogoroff in Turbulence, Classic Papers on Statistical
Thzeory, edited by S. K. Friedlander and L. Topper (Interscience
Publishers, Inc., New York, 1961), p. 151.

(Aj)=27.5(D/ro)513 udu~j(u,1)u5/3.

Utilizing the known relations7

JZ2,,+l(l-Z2)Odz= 'B(a+1, 0+1),

fZ Cos-1(z)dz= a B(- 2)
e2(re 1) 2 2

where B(a,O)
defining Ij as

we find that

(7.2)

(7.3)

(7.4a)

(7.4b)

is the well-known beta function, and

(7.5)

Ic!3.68X 10-2,

IL-4.7 3 X 10-3,

IS-3.96X 10-3,

IQc2.29X 10-.

(7.6a)

(7.6b)

(7.6c)

(7.6d)

7 W. Grobner and N. Hofreiter, Integraltafel (Springer-Verlag,
Berlin/Vienna, 1961), Vol II, Eqs. (121.1) and (341.5a).
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Thus,
(Ac)>1.013(D/ro) 5 13 ,

(AL)c0.1301 (D/ro)
5 1 3

,

(As)-0.1090(D/ro) 5 /3 ,

(AQ)Ž0.0630(D/r,) 6I3 . (7.7d)

From these results we can see that

((aL) 2)c0.883(D/r0)5 13, (7.8a)

((aS)2)-o .02l11(D/ro) 131, (7.8b)

((aQ)2 )-o.0671(D/ro)5 /8 . (7.8c)

It is principally through ((aj)2) and (Z\j) that a precise
definition of the deformed wave front's "shape" is
developed. A quantitative physical insight into the
nature of the deformation can be obtained, however, by
computing the quantity Dj*. The quantity Dj* is the
diameter of the circular region for which (As) takes on
some critical value A*. Thus, it is the aperture diameter
over which the average deformation may be considered
to consist of no significant amount of deformations of
higher order than j. What constitutes a significant
amount is defined by A\*. The aperture diameter Dj* is
defined by Eq. (7.9).

4 f dxW(xDj*)E[(x) - 4j(x)]2> (7.9)

The corresponding aperture area Aj* is simply

A j* _ (7r/4)(Dj*)2. (7.10)

The quantity Aj*lnj is of interest in that it provides a
measure of the "average utility" of each degree of
freedom represented by one of the nj adjustable co-
efficients in 4Žj. Utilizing Eqs. (7.7a-d), we can evaluate
D,* and Aj*/nj.

Dc*c_0.992r0(A*)815, (7.11a)

DL*_3.40rO(A*)3 /5 , (7.1lb)

Ds*_3.79ro(A*)15, (7.11c)

DQ*'5.26ro (A*)3 l5. (7.11d)

A c*/ c*Ž0.77ro2 (A*) 18 , (7.12a)

A L*/nLL3.03ro2 (A*)6/ 5 , (7.12b)

A s*/ns-2.82ro2(A*) 6 /5 , (7.12c)

A Q*/nQc%.3.63r02(A*)615. (7.12d)

These are all the quantities that were to be computed.
In the next section, their physical significance is
discussed.

VIII. APPLICATION AND DISCUSSION
OF RESULTS

To get a quick picture of the shape of the deformed
wave front, we consider the coefficients in Eqs. (7.8a-c).

Since the coefficient of the linear term is so much larger
(7.7a) than that of the spherical or other quadratic terms, we
(7.7b) can conclude that a large part of the deformation con-

*b sists of wavefront tilting. We might have expected this
(7.7c) result from the fact that, as proven in Appendix B,

1 D
- Ydr5~j#,D)r6ll=

R2J

R2/2 if j=C (8.1)

0 if jC5 (8.1)

Considering this in conjunction with Eqs. (5.7) and
(5.8a-c), we see that a phase structure function which
has a six-thirds dependence on r [instead of the five-
thirds power of Eq. (6.1)], corresponds exactly to a
randomly tilted, but otherwise undistorted, plane wave.

Noting that the spherical coefficient ((as)2 ) corre-
sponds to a single degree of freedom in the series ap-
proximation, that the quadratic coefficient ((aQ)2)
corresponds to three degrees of freedom, and noting
further that ((as)2)/((aQ)2) as determined from Eqs.
(7.8b c) is almost exactly one-third, we can conclude
that spherical deformation of the wavefront is no more
and no less significant than the other two quadratic
forms of deformation.

Considering Eqs. (7.12a-d), we see that the area per
degree of freedom over which a series approximation
can provide a given quality match (as specified by A*)
to the wavefront jumps abruptly between the one-term
j= C approximation, and the three-term j= L approxi-
mation. If this jump had not occurred, the conclusion
would have to be drawn that the wavefront is distorted
in a way which is not subject to a geometric interpreta-
tion. In fact, quite the contrary is the case.

To get some insight into the photographic resolution
to be expected when the wavefront being collected is
atmospherically deformed, note that the Strehl defini-
tion of a diffraction-limited optical system collecting a
deformed wave front is set by the mean square phase
variation over the aperture.8 For a mean square phase
variation A*= 1 rad2 , the Strehl definition is about 30%,
i.e., exp[- (A*)2 ]. For long exposure photography, the
applicable mean square phase deviation is (Ac) and
should be computed from Eq. (7.11a). A 30% Strehl
definition is thus achieved with a lens diameter about
equal to ro and an angular resolution of the order of
X/ro. It can be shown4 that increasing the lens diameter
beyond ro increases the phase deviation so rapidly that
the achievable angular resolution is not improved be-
yond X/ro. For a very short exposure, wavefront tilt, as
distinguished from higher-order-type distortion, does
not reduce the resolution of the system. Wavefront tilt
displaces the image of a point but does not blur the
image. Uncorrelated displacement of different points in
an image does, however, distort the picture. Con-
sequently, for a very short-exposure photograph, the

8E. L. O'Neill, Introduction to Statistical Optics (Addison-
Wesley Publishing Company, Inc., Reading, Massachusetts, 1963),
pp. 87, 106.
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mean square phase deviation used to compute the
Strehl definition should be taken as (AL), not (Ac).
From Eq. (7.11b) it is seen that 30% Strehl definition
for very short exposures is achieved when the lens
diameter is about 3.40ro. The corresponding angular
resolution is of the order of X/3.4ro, which is 3.4 times
as much as the long-exposure resolution. (In a more
precise calculation considering the effect of wavefront
distortion on the integrated modulation-transfer func-
tion, we have found that the resolution for high-
speed exposure is increased by a factor of 2, not 3.4,
over the best that can be achieved with a long exposure.
The peak resolution is achieved at a lens diameter of
approximately 3.8ro.)

For an optical heterodyne receiver, as indicated in
Sec. VI, the performance starts to deteriorate signifi-
cantly when the collector diameter becomes larger than
ro. This can be understood from Eq. (7.7a) which indi-
cates that the rms phase deviation for this size aperture
is about one radian and from consideration of the fact
that if the rms difference is this large then there are
many pairs of points in the aperture where the phase
difference is 7r. The signal generated by these pairs of
points is very small, contributing very little to the total
performance of the detector.

For a heterodyne receiver which can track at a suffi-
ciently high rate any tilting of the signal wavefront, the
mean square phase deviation as far as the system per-
formance is concerned, should be computed from Eq.
(7.7b) for (AL) rather than from (Ac). The rras phase
deviation, according to Eq. (7.1 lb) does not become one
radian until the collector diameter is 3.40ro. Thus a
tracking system could utilize a collector diameter 3.4
times as large as a nontracking system. This would
yield a shot-noise-limited signal-to-noise-ratio improve-
ment over the nontracking system of 20 log3.4~Ž10 dB.
(A more precise calculation would probably yield a
somewhat smaller improvement.)

By use of a rapidly adjustable variable focal-length
lens system, spherical deformation of the collected
wavefront as well as tilt could be tracked out. However,
comparison of Eqs. (7.1lb, c) shows that the resulting
gain over a system which only tracked tilt would be
trivial.

Similar semiquantitative analyses of the effect of
wavefront deformation on other types of optical sys-
tems can be computed in the same manner as the cases
treated in this section.

In the discussion of the imaging and the heterodyne
detection systems, it has been assumed that intensity
variations across the aperture were not present, or could
be ignored. This consideration is discussed in AppendixD.

IX. CONCLUSIONS

It has been shown that a precise definition of the
shape of a deformed wavefront can be generated and
that the statistics of the deformation shape can be

computed from the phase-structure function. Formulas
have been provided for these computations for the first
four types of deformation. It has been shown that
according to current theory of optical propagation in the
atmosphere a large part of the wavefront deformation
can be understood as wavefront tilting. Sample tech-
niques for interpreting the deformation results in terms
of performance of certain types of optical systems have
been provided, the implication being that quantitative
estimate can be generated of the performance of any
type of optical system whose behavior is limited by
wavefront distortion.
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APPENDIX A. EVALUATION OF 5:j(r)

In this appendix we outline the procedure used in
evaluating the function 5:(r,D) for j= C, L, S and Q.
As intermediate steps in the process, we have to evaluate
the fuictions K#(r,D) for i=0, 1, 2, and 3; J(m,n; r,D)
for (m,n) = (0,0), (2,0), (0,2), (4,0), (2,2), and (0,4); and
L(m,n; r,D) for (m,n)= (4,0), (3,0), (2,0), (1,0), (0,0)
(2,2), (1,2), (0,2), and (0,4). These functions are
defined as

Ko(r,D) = fdr'W(J r'+Ir, D)W(I r'- r, D), (Ala)

Ko(r,D) = fdr'W(1r'+'rI, D)W(|r'--rJ, D)r'2 , (Alb)

K 2(r,D)= dr'W(|r'+4rj, D)W(Jr'- r , D)r'4, (Atc)

K 3(r,D) = fdr'W( I r+ 2 r |, D)
J XW(|r'-4rJ, D)(r.r')2 , (Ald)

rR-!r r+[R2-(R+,',)2]4

J(nnl ; r,D) = 2] dp dqpn7ql,
J0 J-R2-(R+A'r)'] !

L(n,,n; rD)=f dzvv(l- V
2
)(n+l)I

2
.

SbD

Starting from Eqs. (5.3a, b), we can show that

1ic 1

E Fi(x)Fi(x') = -,
i=1 7rR

2

"7L I

E Fi(x)Fi(x')= (4r'2 -,2+R 2 ),
i=1 rR4

(A2)

(A3)

(A4a)

(A4b)
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ns 1

Z Fj(x)Fj(x')= E [l2r4+±(6r2- 8R2)r 2

i=7rR6

+ (3r4-4R 2r2+4R 4)-12(r- r') 2
], (A4c)

flQ 1

Z Fj(x)Fj(x')= -(18r' 4+(-3r2- 8R2)r'2
i=l1 7rR 6

+ [(9/8)r4-4R2r2+4R 4 ]-6(r. r') 2
}). (A4d)

From this we see that

gc(r,D) = (1/7rR 2)Ko(rD), (A5a)

5L(r,D) = (1/7rR4 )[4Kj(r,D)+ (R2 - r2)KO(r,D)], (A5b)

i5s(r,D) = (l/7rR6)[12K 2(r,D) + (6r2 -8R 2)Kl(r,D)
+ ( 3r-4R2r 2+4R 4)Ko(rD)

-12K 3(r,D)], (A5c)

5Q(r,D) = (l/7R6) { 18K2 (r,D)+ (- 3r 2 - 8R2)Kj(r,D)
+ [(9/8)r 4-4R 2r2+4R4]Ko(r,D)

-6K3 (r,D)}. (AMd)

We define a rectangular coordinate system with axes
parallel and perpendicular to the vector r. Let p and q
be the components of r' in this system, with p denoting
the coefficient parallel to r. Considering the range of p
and q in which W(jr'+±rj,D) W(|r'- rf,D) is non-
zero, i.e., the region of overlap of two circles of diameter
Dwhose centers are at (p = =r, q= O) and (p= -r, q= O)
we see that

Ko(r,D) =J(O,O; r,D)W(r,2D), (A6a)

Kl(r,D) = [J(2,0; r,D)+J(0,2; r,D)]W(r,2D), (A6b)

K 2(r,D)== [J(4,0; r,D)±+2J(2,2; r,D)
+J(0,4; r,D)]W(r,2D), (A6c)

K 3(r,D) =r2J(2,0; r,D)W(r,2D), (A6d)

where we have made use of the fact that

r/ 2 =p2+q2, (A7a)

r-4= p 4
+2p

2
q

2
+ q

4
, (A7b)

(r- r')2 = =r 2
p

2
. (A7c)

Examining Eq. (A2), performing the q integration and
making the substitution

see that

J(0,0; r,D)=4R2[L(O,O; r,D)], (AlOa)

J(2,0; r,D) = 4R4 [L(2,0; r,D)-2(r/D)L(lO; r,,D)
+(r/D)2 L(O,O; rD)], (AlOb)

(A10c)

J(4,0; r,D) = 4R6[L(4,0; r,D) - 4(r/D)L(3,0; r,D)
+6(r/D)2 L(2,0; r,D)-4(r/D)3 L(lO; r,D)

+(r/D)4L(O,O; r,D)], (A10d)

J(2,2; r,D) = !R'E(2,2; r,D) -2(r/D)L(1,2; r,.D)

+(r/D)2L(0,2; r,D)],

J(0,4; rD) = '-R L(0,4; r,D)].

(AlOe)

(AlOf)

The L(m,n; r,D) functions can be evaluated using
integration formulas from Dwight's "Table of Inte-
grals". The results are

L(4,0; r,D)= '- cos-'(r/D)+ [1-(r/D)2]-T- 6 (r/D)5

+ (1/24)(r/D)3 + 1 (r/D)], (Al la)

L(3,0; r,D) = [1-(r/D)2 ]E[- (r/D)4

+ (1/15)(r/D) 2+ (2/15)],

L(2,0; r,D) = cos-'(r/D)+E(l-(r/D)2]1/2
X[-'-(r/D) 3+ 8(r/D) ],

L(l,O; r,D)=E[1-(r1D 'E2-3(rlD)2 2

L(O,O; r,D) =2cos-1 (r1D)

(Alb)

(Al1c)

(Al1d)

+El1-(rlD 'E2-2' (r/D)]J, (A 1le)
L(2,2; r,D) =16 cos-1(r/D)+ [1- (r1D)2]1 (rlD)

-(7/24)(r/D) 3+ I16(r/D)], (Allf)

L(1,2; r,D) El [-(rlD)2]'.

X [R (r/D) 4- 2 (r/D) 2+ 5 ], (A1 lg)

L(0,2; r,D) = I cos-1 (r/D)+ [1-(r/D)21-
XE[1(r1D)3-A(r1D)J, (Allh)

L(0,4; r,D) = 15 Cos-1(r1D)+E1-(r1D IE2-I(rlD)
+(13/24)(r/D)3 -} 6 (r/D)]. (Alli)

Substituting these equations into Eqs. (AlOa-f) and the
results into Eqs. (A6a-d), and that set of results into
Eqs. (A5a-d), we obtain Eqs. (5.6a-d).

APPENDIX B. A THEOREM

v= (2p+r)/D, (A8) In this Appendix we prove the theorem that

1 rD R 2/2
- I rdr5 j(r,D)r2=
R

2
O

if j=C

if j AC.
(B1)

4 r M

= -R+n+2| dv( v- ) (1-v2)(n+l)12. (A9) We start by noting that
n+l Ir/D D 2 =- yf . (

Expanding [v-(r/D)]m and considering Eq. (A3) we

for p, we get

J(mn,n; r,D)

1433November 1965

J(0,2; rD) = !RIEL(0,2; rD)],

= X2+y2+ X12+Y12 - 2xx'- 2yy'.
_ n /

(B1)



This can be expressed in terms of the functions F,(x)
and F,(x') giving

r 2= [ 2 R8 /12][1[l(x)F.4(X')+Fl(x')F4 (X)]
+ 7rR 4I,'1(x)F,(x') - (rR4 /2)

X [F2(x)F2 (x')+F3 (x)F3 (x')]. (B2)

We note that because of the orthonormality conditions

1 n-dxdx'W(x,D)W(x',D)r' E F,.(x)F,,(x')
27rR 2 JJ

R2 /2 if j=C

0 if j C,

since the F1F4 term cannot contribute, the FF, term
always contributes R2/2 to the result, and the F2F2 and
F3,F terms each contribute - R2 /4 whenever nj is three
or greater; i.e., whenever j#C. In this latter case, the
net contribution is zero. However, transforming to r and
r' coordinates and considering the definition of 5F#(r,D)
as given in Eq. (5.5), we see that

1434

CN2 =AL&-'. (C2)

A reasonable fit to available data for A and L0 is ob-
tained with expressions

'l = 6.7 X 10-'4 exp(-Iz/3200),

L,= 2/0,

(C3a)

(C3b)

where h is altitude, and all units of measure are under-
stood to be in mks units. Substituting (C3a, b) into
Eq. (C2), and the result into Eq. (Cl), we obtain a
closed-form result for -A. This result for the most general
type of propagation path (ignoring curvature of the
earth) is expressible in terms of the incomplete gamma
function of order two-thirds.

APPENDIX D. SCINTILLATION EFFECTS

1 f f
R-| J dxdx'W(x,D) IV(x',D)r2 E Fi(x)Fi(x')

= - drr25#(r,D)
27R2 J

1 rD
=- I rdrr2 5#(r,D).

R2 J w

From Eqs. (B3) and (B4) we see that

1 rD R2/2 if
- I rdr~j(r,D)r2 =
R 2 J10 if

j=C

thus proving the theorem.
Similar relationships, such as that

i jDrdrSj(r,D)=.j (for all j)

can be proven just as easily.

APPENDIX C. EVALUATION OF XA

It may be shown2 that -A can be written as

A= 2.91l() ath of

propagation

dACN2

where X is the optical wavelength, A is a variable
defining length along the path of propagation. The
quantity CN is called the atmospheric refractive-index
structure constant. It is a function of altitude and con-

This entire article thus far has considered wavefront
distortion with the implicit assumption that intensity is
uniform over the area of interest. For some problems
this is indeed the case and the results derived and con-
clusions drawn need no qualifications. In this Appendix,
we sketch out a proof of the fact that the results also
apply when scintillation is present, but with a slightly

(B4) different interpretation.
Instead of working with only the phase deviation

O(x), let us also consider the log amplitude l(x), defined
as the natural logarithm of the ratio of the instantaneous
amplitude at x, to what the amplitude would be if there

(Bs) were no scintillation. Thus, 0(x)-il(x) is the complex
phase which completely specifies the instantaneous
wave fluctuation at x. Now rather than consider the
simple phase-structure function as defined in (1.1), we
consider what we may call the wave-structure function
for which we also use the symbol D(r).

(B6)

(DI)

where the vertical bars denote taking an absolute value.
We now go back through the paper asking that the
infinite series D(x) and the finite polynomials 1j(x),
define in (3.1) and (3.5), provide the best fit in the sense
of Eqs. (3.2) and (3.3), not simply to O(x) but to
k(x)-il(x). It is to be understood in (3.2) and appro-
priate places thereafter that absolute values are to be
taken in squaring. Of course, the coefficients a,; are to
be allowed to take on complex values and Eq. (3.3)
must be understood as two equations for each value of
gu, one for the real and one for the imaginary part of
a,. The coefficients ac 2, aL

2
, as 2 and aQ2, Eqs. (3.4a-d),

are to be understood as the sum of magnitudes.
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sequently depends on A because altitude may vary along
the path of propagation. CN2 may be written in terms
of the atmospheric refractive-index variance A and the
outer scale of turbulence Lo defined here as the distance
in which turbulence correlation falls to one-half of the
maximum value. This expression is

5)(r) == � IE0(x)-i1(x)1- E0(x')-i1(x')1 1 2)

= (Eo W -O(X')]2)+ OW _J(X1)]2)'
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Equation (4.1) now takes the form

fA=- dxW(x,D)[0 2 (x)+1
2
(x)]

- JdxW(x,D)
-7rR2-=I

X {f [(x) - il(x)]d,,+ [E(x)+il(x)]a,,}F,,(x)

1 /0
+- E a,a^ dxW(x,D)F,(x)F,(x), (D2)

7rR 2v~

where the overbar denotes a complex conjugate. Equa-
tion (4.2) takes a corresponding form. Now, applying
the modified form of (3.2) to determine the real and
imaginary parts of a,, separately, we find that Eq.
(4.3) takes the form

a,,= f dxW(x,D)[4(x)-il (x)]F,,(x),

as might have been expected. All the rest of the equa-
tions of Sec. 4 follow immediately with k(x) replaced
by [O(x)-il(x)], and squares understood to involve
absolute values.

Likewise, all the equations of Sec. 5 follow with the
phase 0 (x) replaced by the complex phase [4(x) - il(x)],
and with D(r), previously the phase-structure function
as defined in (1.1), now understood to be the wave-
structure function as defined in (Dl). Thus Eqs. (5.7)
and (5.8a-c) are seen to be correct as stated when scintilla-
tion is present except that 5)(r) has a different interpreta-
tion than given in Eq. (1.1).

The balance of the paper is better with this inter-
pretation of 5(r) than it was initially. Equation (6.1)
and (Cl) are precise when D(r) denotes the wave-
structure function. If D(r) is simply the phase-structure
function then these two equations are accurate only
when the propagation path is short. For a long path, the
coefficient a contains an r-dependent factor which varies
slowly and monotonically from a value of about one-half
at r = 0 to unity for large r. This factor was arbitrarily
set equal to unity in (6.1) and (Cl).

Offhand, while pleased with the increased precision
of the structure function for propagation in the atmos-
phere, obtained by considering scintillation and working
with the complex phase we have to ask if we can now
assign any meaning to the complex polynomial used to
match the complex phase. For a problem in which there
is no scintillation, or when the propagation path is
short, the results derived in the main body of the paper
are correct with 5O(r) interpreted as the phase-structure
function and we can assign exact physical meaning to
the quantities we have been evaluating. For long-path
propagation, where scintillation may be significant, we
make no more than a factor-of-two error by still inter-
preting aD(r) as the phase-structure function, and we
retain some of the physical insight into the quantities
evaluated.

To the extent that only phase fluctuation is of im-
portance in a process, we overestimate the extent of the
distortion by a factor of two. In those processes in which
intensity fluctuations also are significant we may not
be overestimating the effect of distortion. In the case
of the image-forming process of a lens, for instance,
intensity variations across the lens result in additional
diffraction which limits resolution. If the intensity
variations are random, the log amplitude appears in
image statistics in a form analogous to the phase so that
the wave-structure function is the quantity which
appears. Thus, use of Dc*, as computed from (6.1) and
(Cl), to estimate photographic resolution should be
more precise than the derivation, based on phase
fluctuation alone, would justify. On the other hand, the
use of DL*, when intensity fluctuations are significant,
to estimate high-speed resolution may be more opti-
mistic than warranted since the high-speed exposure,
freezing the distortion, can compensate only for wave-
front tilt, but not for a linear variation of log amplitude.
When intensity fluctuations are not significant, i.e.,
when ([l(x)-l(x')]2)«([k(x)-4(x')] 2 ), the use of DL*
to estimate high-speed photographic resolution should
be quite accurate.

How to use the geometric statistics of wavefront
distortion, when to ignore, and how to consider the
effect of intensity variations requires careful judgment
by the user.
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