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Lateral support of very large telescope mirrors
by edge forces only

G. SCHWESINGER
Haydnstrasse 14, D 7920 Heidenheim/Brenz, Germany

(Received 30 November 1990 ; revision received 28 January 1991)

Abstract. Until now a diameter of about 4 m seemed to be the upper-size limit
of telescope mirrors that still permitted cost-saving designs of lateral supports by
edge forces alone . In some designs, the supporting edge forces comprised not only
basic push-pull action normal to the edge but also a specific, moderate amount of
tangential shear . However, this was a by-product of design economy rather than
the result of understanding the potential of tangential support forces as a means of
reducing mirror flexure systematically, down to residuals in the 1 % region . The
surprising possibility of extending the usefulness of pure edge supports is
demonstrated by the example of the 8-m mirror of the European Southern
Observatory's Very Large Telescope . Fitted with a lateral support at the outer
edge alone, this thin mirror will exhibit a wavefront aberration with a calculated
rms value of only 18 nm, without taking into account possible active control .

1 . Introduction
During the last few decades, a number of telescope mirrors with diameters up to

about 4 m, and of more or less conventional aspect ratios, were fitted with lateral
supports in which the supporting forces were exerted only at the outer edge in the
form now known as push-pull support. It is characterized by an angular distribution
of peripheral forces normal to the cylindrical edge, i .e. perpendicular to the optical
axis, and following a cosine law with respect to the azimuth angle . The underlying
principle had been suggested and analysed many years ago [1] and, thereafter, been
repeatedly investigated, either in a general form or in conjunction with particular
telescope projects [2-6] . Push-pull supports are simpler than, for instance, lateral
supports, which are internally nested through the back face . They also are more
easily adjustable. However, they could only be successfully put into practice after
progress in bonding technology permitted safe application of tensile supporting
forces .

The push-pull principle was later extended to include an additional lift by a
distribution of tangential shearing forces at the outer edge . Such supports could be
designated push-pull-shear supports . It will be shown that the systematic utilization
of the shear component, whose potential had not been fully recognized until now, can
lead to surprising improvements . The bending distortion of large mirrors can be
reduced drastically ; in fact, so much that the practical application of such support
designs need no longer be effectively limited by mirror size .

2 . Tangential shearing forces as a design tool
Let the elastic surface deflection w of a circular solid mirror in its upright position

under the action of gravity be expressed in the form of a Fourier expansion :

w(r, 8) _ >J w„ (r) cos n0,
n=1
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d
gravity vector

Figure 1 . Laterally supporting edge forceP as resultant of a normal component P, cos 0 and
a shearing component P, sin 0, both agreeing with mode 1 conditions .

where r and 0 are polar coordinates, the direction 0 = 0 coinciding with the gravity
vector (see figure 1) . A well-designed lateral edge support will suppress all Fourier
modes n, except the inevitable mode n =1 and, in general, some modes of rather high
orders of no practical significance . The lowest of these is smaller by I than the
number of equidistant radial support points on the circumference of the mirror .
Thus, in practice, the limit of applicability of push-pull edge supports with respect
to elastic flexure is determined solely by the shape and magnitude of the mode n=1 .
Both result from the interplay of the support parameters chosen to maintain mirror
equilibrium . In push-pull-shear supports it is the particular balance between the
normal edge force P, cos 0 and the tangential shearing force P, sin 0 (figure 1) that
most strongly influences the magnitude of mode 1 . The forces P, and P„ assumed
positive in the sense shown (the usual sign convention for P, is opposite, however),
act in a plane normal to the optical axis and bisecting the mirror edge .

Push-pull supports in which part of the mirror weight is supported at the central
hole have in a few cases been investigated [4, 6], but their advantages may still be
doubted. If some reduction of flexure can be achieved, it must be paid for by higher
orders of coma aberration that are not easily correctable . Such appearance of higher
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coma orders will be noticed in an example treated later (see figure 6) . A further
distinct disadvantage is the technical difficulty of fitting a rather sophisticated
support system into the relatively small mirror hole while at the same time retaining
sufficient space for necessary telescope instrumentation .

Let the symbol fi denote the fraction of the weight supported by tangential edge
forces relative to the total weight support at the same edge . One can then
immediately conclude from figure 1, after integrating the upwardly directed force
components over the full circumference, that

fl=PtI(P1+Pr ) •

	

(2)

In the first genuine push-pull supports applied in telescope design the mirror
weight was laterally supported only by normal edge forces in a cosine distribution ;
for example, the 4-m KPNO, 2 .2-m MPIA, 3 .5-m MPIA telescopes, which all
represent the special case #=0 .

In the general case of non-zero values of /3 the radial force and the tangential force
add up to a vector P(O, /3), which is rotated clockwise by an angle y with respect to the
vertical . The vectorial addition of the edge forces yields a resultant of the magnitude

These are in fact the well-known conditions for the original push-pull supports
mentioned above. Putting P=0-5, we find

These conditions form the basis of support designs that are being used with
telescope mountings of the alt-azimuth type . In this case they become particularly

simple. There also existed, a now obsolete, more complex version [7] that was
conceived for equatorial mounts, shortly before the introduction of modern alt-
azimuth mounts . But there are at least two large telescopes that took advantage of the
simple design with /3=0. 5 ; namely, the Anglo-Dutch 4.2-m Herschel telescope [8]

and ESO's 3 .5-m New Technology Telescope [9] . The Herschel telescope does,
however, not belong to the pure push-pull-shear type with fl=0 .5, because the
flexure of its mirror also involves the Fourier mode 3 . A full account is given in [9] .

Values of /3 other than the two special ones considered above do not seem to have
received particular attention so far . It will be shown that these other values, namely

values greater than 0 . 5, open up surprising possibilities . An example with fl=0. 8,

briefly discussed in [9], was however a singular case, only meant to illustrate a
possibility of suppressing, in part, higher aberration orders in mode . 1 . Thus, it does
not directly concern the essential point that will later be brought to light in

2$)

	

0+#1]1/1 .[(1 -

	

cost (3)P= 1 P`fl

The clockwise rotation of the resultant vector is determined by

2/3-1
tan y =

	

. (4)(1- $) cot 0 + # tan 0

If /3=0, the last two equations reduce to

P=PI cosO, (5)

Y= -0 . (6)

P = Pr = const. (7)

y=0. (8)
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connection with #-values exceeding 0 . 5 . In fact, it turns out that the value 0 . 8 already
lies somewhat beyond the useful range .

No attention will be paid either to /3-values below 0 .5 ; from exploratory trials,
though more evidence is lacking, it is surmised that such values do not offer clear
advantages. The analysis will therefore be restricted to the range #>0-5. As an
example, figure 2 illustrates (for the arbitrary value fi=0 .68) the way in which the
lateral edge forces are modified, compared with the standard case according to
equations (7) and (8) .

Figure 2 . Lateral edge forces P corresponding to a shear fraction $=0 . 680 .

D
ow

nl
oa

de
d 

by
 [

18
.7

.2
9.

24
0]

 a
t 1

3:
41

 0
9 

Ja
nu

ar
y 

20
14

 



Lateral support of very large mirrors

	

1511

3. Application to an 8-m mirror
The object to be investigated will be a lateral support for the 8-m mirror of the

Very Large Telescope (VLT) of ESO . This mirror is a thin monolithic meniscus of
Zerodur ceramics with the following principal dimensions :

outer diameter 8200 mm,
hole diameter 1000 mm,
thickness

	

175 mm,
radius of curvature of the middle surface 28888 mm .
f-number corresponding to outer diameter 1 .76

With its very small aspect ratio of 1 : 47 and small f-number, the VLT primary
is a sensitive gauge for exploring the possibility of lateral support by no other means
that pure edge forces for a very large mirror . The decision to initiate . such an
investigation was made by ESO in the course of the support design there . Some
previous considerations pursued by the author had indicated that an investigation of
the problem would probably unveil surprises regarding the influence of the
parameter fi .

The design of ESO originally provided 48 equidistant support units at the outer
mid-edge and 10 at the inner one . These units produced lateral support forces
corresponding to the parameter value 1=0.5. The outer supports also provided axial
forces with a cosine distribution which maintained the meniscus in the static
equilibrium . Its bending distortion was to be corrected by 150 actuators on its back
face. Finite element calculations showed that the rms value of the residual wave
aberration could be reduced to 14 nm, but only by using considerable axial
correction forces up to about 200 N .

An rms value of 50 nm was set as the goal of the author's attempt to derive an
analytical solution for a pure edge support, which would, hopefully, obviate
extensive active correction and thus preserve the full dynamic range of the active
control system for other corrections . To reach this goal, there were several optional
support parameters available, namely, axial forces in cosine distributions at both
edges and, within narrow limits, also bending moments at both edges, again in cosine
distributions . Such moments arise if the radial edge force resultants do not pass
through the mid-edge. Further parameters entering into the analysis are the fraction
of the mirror weight to be supported at the inner edge and the two #-ratios at which
tangential and radial forces act together at the two edges . Altogether there are seven
parameters (see figure 3) . The five parameters a, co , E 1 , T o and r, are not entirely
independent of each other but must satisfy the following equilibrium condition for
the moments

go -El+a(C0+-r0)-(1-a)(S1-T1)=O .

	

(9)

The present analysis uses the theory developed in [9]. However, as several
parameters previously not considered now play a part, different systems of boundary
conditions had to be formulated .

4. Results for two systems of boundary conditions
From the many combinations of support parameters investigated, only those two

will be discussed which gave the best and second-best result, the latter already four
times worse . All other combinations can be dismissed because they only tend to
degrade the first ranking result or, still worse, were inferior from the outset .
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a Radius of curvature of the middle surface of the shell (28887 .5 mm) .
G Mass of mirror meniscus (23240 kg) .

i=0 Index designating quantities at the inner edge (central hole) .
i=1 Index designating quantities at the outer edge .
M,p ; Radial bending moment at the edge .
R; Radius of the cylindrical edge (R0 = 500 mm, R1 = 4100 mm) .

t ; Spacing between mid-edge and plane of support force resultant (see figure) .
V; Axial shearing force at the edge .
z; Distance of centre of gravity from mid-edge .
f ; Relative contribution of tangential shearing forces to the support of weight at the

respective edge .
1 -f; Corresponding relative contribution of radial forces (normal forces) .

e; Fraction of the moment Ga exerted by axial edge forces V; cos 0 .
Ci = z;/a (C 0 =4.98678 x 10 -3 , b1=4. 98670 x 10 -3 ) .

a Fraction of mirror weight supported at the hole .
Ti =t;/a

Figure 3 . Notation for the geometry of the mirror meniscus and the applied edge forces .
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It was found that the choice of the parameter N1 (defined in figure 3) plays a key
role, inasmuch as other attempts to derive acceptable solutions were futile unless f1
was well above 0 .5 . In other words, an edge force distribution similar to the one
shown in figure 2 is a prerequisite to a successful result. In this respect, the other
parameters are of little or no help . Attempts to obtain improvements by choosing
other parameter combinations seem to do more harm than good .

4.1 . Mirror balance by axial forces at the outer edge
The first and most important case is marked by zero values of o, go, To and i1 .

The only parameter to be varied freely is # j . Equation (9) then reduces to the
obvious condition a 1 = -C1 . It requires that equilibrium be maintained only by axial
forces at the outer edge . This system of boundary conditions was expressed in the
form

Myo =0,

Vo = 0,
P10 =0,

Mc , 1 = 0,

P1 1/p, = f'1/( 1 - fl1) .
First it will be shown what happens if we insert the conventional value f'1 =0.5 .

The corresponding deflection w for 0=0, i.e. the radial profile w1 (r) of mode 1
according to equation (1), is plotted in figure 4 . It reaches an rms value of about
4000 rim, an amount totally out of the question . However, by a straight increase of f1
to values near 0 .75 the deflection drops drastically by two orders of magnitude, as
shown in figure 5 .

With the above boundary conditions and varying only fl, the distortion of the
mirror surface retains its intrinsic general shape, apart from a possible sign reversal,
while the deflection ordinates may undergo changes by order of magnitude, as seen
by comparing figures 4 and 5 . Consequently, when N1 is increased to a certain value,
the surface distortion vanishes almost entirely and change of sign occurs . This
meniscus flexure behaviour opens up the possibility of using only a lateral support at
the outer edge, with negligible loss of optical quality, for an 8-m mirror . For
# I = 0.7529, which is the most favourable value in the present case, the analytical
solution leads to wavefront aberrations with an rms value of 18 nm, an amazingly
small amount in view of the large mirror diameter . This result is in line with later
finite element calculations performed at ESO . With tangential shearing forces
corresponding to the analytical result and with small additional correction forces of
less than 10 N (necessary only to compensate an undesired extraneous effect'), the
finite element evaluation revealed an rms value of 6 nm for the residual wavefront
error .

tWith f1 =0.7529, equations (2) and (3) yield a support force P varying between the
extremes P, and P1 in a ratio 1 : 3 .05. To reduce the maximum force P1 and, at the same time,
the difference Pt -Pr , the equidistant force application has been dropped . The mirror will be
supported instead at non-equidistant points spaced more closely near the horizontal diameter,
less closely near the vertical one . This device introduces unwanted Fourier modes
n=2, 3, 4 . . . which are eliminated by active control with the above-mentioned small
correction forces .
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Figure 4 . Deflection w of an 8-m meniscus laterally supported at the outer edge alone by
standard push-pull-shear (fl1=0 . 50) and balanced by axial edge forces V1 only .
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Figure 5 . Deflections w of an 8-m meniscus supported as in figure 4, but with shear fractions

fit increased to values near 0.75 .
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4.2 . Partial weight support and balancing forces at the hole
The result just discussed is so good that there is hardly any room for further

improvement by varying the other parameters which have so far been put equal to
zero . Nevertheless, the investigation did include such possibilities-namely, the
effect of simultaneous axial forces at the hole, of bending moments at the outer edge
without and with axial forces at the hole, of a partial weight support at the hole with
balancing axial forces at the outer edge and at both edges, of partial weight support at
the hole with bending moments at both edges, and, finally, of the preceding option in
conjunction with axial forces at the hole .

All these attempts failed to yield further improvement or, at least, to effect a
worthwhile reduction of the parameter values # I , which would have been a practical
advantage . Only the second-best case, the last option on the listing above, will
finally be presented although it is already much inferior to the first solution . The
parameters were chosen as follows

P0=0.5 ,

u=0-2,

to = - 20 mm,

	

specified as extreme values by ESO,

t 1 = 20 mm,

$1 = 0 . 71 .

400

1
1
4-

300 „

i

200 4-
1 366i

4-
100 1

w (nm)
1
1

0i

14-4-
-100 +

i

-200

4- . . . . . . . . . .
0 . 1

	

0 . 2

	

0 . 3

	

0 . 4

	

0 . 5

	

0 .6

	

0 . 7

	

0 . 8

	

0 . 9

	

1 . 0

r

Figure 6. Deflections w of an 8-m meniscus supported at both edges : 20% of its weight is
supported at the inner edge with a shear fraction f 0 =0. 50. The shear fraction I'1 at the
outer edge= 0 . 71 . Balancing moments are applied at both edges, equivalent to support
force displacements to = -20 mm and t 1 = + 20 mm. The balancing axial forces at the
outer edge are further reduced by assisting axial forces at the inner edge, corresponding
to different values of s o .

# 1 =0-710 rms w
(nm)
67 .4

48 .8
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The right-hand sides of all boundary conditions then take non-zero values . Three
values were tried for the parameter g o which determines the axial force Vo in the
second condition . The third condition changes to P,./P,..=1.

Figure 6 shows the corresponding deflection curves . The bending moments now
applied at both edges, equivalent to the displacements t o and t I , act in such directions
that back up the balance of the meniscus . Smaller axial forces at the outer edge
therefore suffice to maintain equilibrium . Nevertheless, the rms deflection under-
goes a four-fold increase relative to the first case . This is obviously due to the steep
gradients of the deflections at the edges . Thus, edge moments may do more harm
than axial forces otherwise required for reasons of equilibrium, as was the case in the
first example . This conclusion as well as the demonstrated beneficial effect of
tangential shear does not seem to agree with a statement in [101 .

It must be pointed out that the second example has not yet been fully optimized
so that some margin for further improvement may still exist . However, it is virtually
certain that even an optimized solution would never match the low deflection values
of the first case, apart from the fact that it would still suffer from pronounced higher
orders of coma, as mentioned at the beginning and as borne out by the character of
the curves in figure 6. A very slight advantage would only exist with regard to the
smaller value fI .

5. Outlook
As a sequel to the reported results, an interesting question remains to be

answered: How can the design of lateral supports for large structured mirrors profit
from the possibilities here derived for solid mirrors?
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